《九章算术》读后感
认真读完一本名著后,大家一定对生活有了新的感悟和看法,需要写一篇读后感好好地作记录了。千万不能认为读后感随便应付就可以,以下是小编帮大家整理的《九章算术》读后感,欢迎大家借鉴与参考,希望对大家有所帮助。
《九章算术》读后感1
《九章算术》在很多方面有突出的成就,反映了这一时期我国数学的发展水平。其成就最突出地表现在分数运算,比例问题和“盈不足”算法方面。作为世界上最早系统叙述分数运算的著作,它在“方田”章中论述了约分、通分、比较不同分母分数的大小以及分数的四则运算。通分时它运用的是辗转相减法。在“粟米”、“衰分”、“均输”各章中涉及了许多比例问题,这在世界上也是最早的。比如今有术,也就是四项比例算法,可用公式表述为:所求数=(所有数×所求率)除所有率,即所求数:所求率=所有数:所有率,它的应用非常广泛,其它如衰分术、反衰术等都是由此推演、发展而来的各种算法。可见其重要性。“盈不足”术是我国古代解算难题方法,也是一项创造,如“人出八盈三,人出七则不足四,问人数物价各几何”,它需要两次假设才能得出答案,有人认为欧洲中世纪所称“双设法”就是这一方法经由阿拉伯传去的。
其次,在几何学方面也有杰出的成就,这时的几何学主要用于面积、体积计算。
其三,在代数方面的主要成就主要是一次方程组解法,负数概念的引入及其加减法法则,开平方,开立方,一般二次方程解法等。《九章算术》方程共18问,有的相当于二元一次方程组,有的相当于三元一次方程组,甚至有多达五个未知数的,而其中第13题涉及6个未知数,却只能列5个一次方程组,可以说是世界上最早的一次不定方程组。再有,开平方术,开立方术不但可解二项二次方程,二项三次方程,而且也可以解一般的二次数值方程和三次数值方程。它是我国古代解高次数值方程的基础,与线性方程组的解法一起,构成我国古代代数学的主要内容,《九章算术》对此阐述得十分详尽,足以标示这时期的代数学发展水平和所取得的成就,在我国数学史上占有重要的`地位。
《九章算术》读后感2
《九章算术》是我国古代数学的经典著作,它上承先秦数学发展的源流,又经过汉代许多学者的删改增补,是先秦数学成就集大成的总结,它的出现,标志着中国古代数学体系的形成。
在长期生产实践活动中,我国古代劳动人民发现并总结了许多数学经验,并记录下来,这些成就散见于各种文献中,内容十分丰富,出土的汉简中,包含数学知识的简牍很多,从中已可看出先秦及汉代的数学发展水平,尤其是1983年12月至1984年1月出土于湖北江陵张家山西汉古墓的《算数术》,墓主人下葬时间初步断定为吕后二年(前186)或稍晚,因而该成书绝不晚于西汉初年,它反映了先秦数学的某些成就是确定无疑的。它的内容包括两类,一是计算方法,一为应用问题。《汉书·艺文志》记载的《许商算术》、《杜忠算术》都已失传,而《算数术》却不见记载。与《九章算术》比较,可以比较清楚地看出,它的成就被《九章算术》所继承和发展,其内容虽多有相同或相似,但《九章算术》论述得更为清晰、系统,其发展脉络十分清楚。因而认为《九章算术》是先秦秦汉时期数学成就的总结应该是不成问题的。
《九章算术》不是成于一时一人之手,而是经历了漫长的过程,由多人逐步删改、修补而在东汉初年(50)最后形成定本的。
《九章算术》内容异常丰富,题材很广泛。它共九章,分为246题202术,主要内容依次为“方田”,用于田亩面积的计算,“粟米”是谷物粮食的按比例折算,“衰分”是比例分配问题,“少广”用于已知面积、体积而反求一边长和经长等,“商功”用于土石工程,体积计算,“均输”是赋税合理摊派问题,“盈不足”乃双设法问题,“方程”是一次方程组问题,“勾股”为利用勾股定理求解的各种问题,其中的大部分内容与当时的社会生活密切相关。
《九章算术》读后感3
《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部,是周秦至汉代中国数学发展的一部总结性的有代表性的著作。这部伟大的著作对以后中国古代数学发展所产生的影响,正象古希腊欧几里德《几何原本》对西方数学所产生的影响一样,是非常深刻的。
《九章算术》最初是由谁、在什么时候开始编纂的,现在已经难以确考了。据数学史家们研究,这部著作是我国秦汉时期的数学家们历时一,二百年之久的智慧结晶,汇集了当时数学研究的主要成就,至迟在公元一世纪时形成了流传至今的定本。在此后一千多年间,《九章算术》一直是我国的数学教科书。它还影响到国外,朝鲜和日本也都曾把它当作教科书。书中不少题目,后来还出现于印度的数学著作中,并且传到了中世纪的欧洲。我国古代数学家刘徽(魏晋时人,生卒年不详)曾为该书作注。
《九章算术》是以数学问题集的形式编写的,共收集二百四十六个问题及各个问题的解答,按性质分类,每类为一章,计有方田、粟米、衰分,少广,商功、均输、盈不足、方程和勾股九章故称《九章算术》。
《九章算术》中的各类数学问题,都是从我国古代人民丰富的社会实践中提炼出来的,与当时的社会生产、经济,政治有着密切的联系。
在同一时期的世界其他国家和地区,很难找到一部数学著作象?九章算术》这样,包罗了如此丰富的深刻的数学知识。
《九章算术》的意义还远不止于它在中国数学史上的重要地位,更以一系列“世界之最”的成就,反映出我国古代数学在秦汉时期已经取得在全世界领先发展的地位。这种领先地位一直保持到公元十四世纪初。
《九章算术》最早系统地叙述了分数约分,通分和四则运算的法则。象这样系统的叙述,印度在公元七世纪时才出现欧洲就更迟了。欧洲中世纪时作整数四则运算就够难的了。作分数运算更是“难于上青天”,有一句西方谚语,形容一个人陷入困境,就说他“掉进分数里去了”。